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Abstract — Prime numbers are unique numbers. Prime numbers are numbers that only 

have a dividing factor consisting of numbers 1 and the number itself. The prime numbers 

from 1 to n that are relatively small can be generated manually, but a prime number 

generator algorithm is needed to generate prime numbers on a large scale. This study 

compares three prime number generator algorithms, namely: The Sieve of Eratosthenes, 

The Sieve of Atkins, and The Sieve of Sundaram. These three sieve algorithms have 

their own differences in generating prime numbers. The Sieve of Eratosthenes uses a 

simpler method by crossing multiples of prime numbers and marking them as non-prime 

numbers. The Sieve of Atkins uses several requirements for quadratic equations and 

modulus in determining prime numbers. The Sieve of Sundaram has an algorithm similar 

to The Sieve of Atkins, but there are requirements for linear equations to determine 

prime numbers. This study aims to see a comparison of these three algorithms in terms 

of accuracy and speed in generating prime numbers on a large scale. The results of this 

study indicate The Sieve of Eratosthenes, Atkins and Sundaram algorithms can generate 

large numbers of prime numbers with good accuracy, this was tested by the Fermat 

Primality Test Algorithm. The conclusion that can be drawn from this study, The Sieve 

of Eratosthenes have a faster time to generate prime numbers on a large scale than the 

other two algorithms. 
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I. INTRODUCTION 

 
In computer science, a discussion of prime numbers 

is a simple matter that is enough to attract the attention 
of researchers. One of the uses of prime numbers is to 
generate public keys and private keys on cryptography. 
Prime numbers are unique numbers. According to 
mathematical theory, the uniqueness of number 2 is 
where number 2 is the first and only prime number 
(Pande, 2015). 

The sieve algorithm is an algorithm that searches for 
prime numbers starting from 1 to n (Sorenson, 2015). 
There are several sieve algorithms, including The Sieve 
of Eratosthenes, The Sieve of Atkins, The Sieve of 
Sundaram, and Mersenne Prime Number (Maltare & 
Chudasama, 2016). Besides the prime number generator 
algorithm, there is also a special algorithm for testing 

prime numbers such as Fermat Little Theorem, Miller-
Rabin, Solovoy-Strassen and so on (Tarafder & 
Chakroborty, 2019). 

There are several previous studies that are relevant 
to this study. Research conducted by (Kochar & Dheeraj 
Puri Goswami, 2016), do a comparison of two prime 
number generator algorithms, namely The Sieve of 
Eratosthenes and The Sieve of Sundaram. The Primality 
Test is carried out with several algorithms such as 
Miller-Rabin, Fermat, Solovoy-Strassen, and 
Frobenius. From the test results, it can be seen that the 
performance of The Sieve of Eratosthenes is better than 
The Sieve of Sundaram. 

Research conducted by (Apdilah, Harahap, & 
Khairina, 2017) perform prime generation with the 
Mersenne Prime Number algorithm and perform testing 
with Miller-Rabin Primality Test. This research can 
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produce prime numbers on a large scale. This large 
prime number is useful for RSA cryptographic 
algorithms, which can increase the security of public 
keys and private keys. 

Research conducted by (Rajput & Bajpai, 2019) 
conduct research on probabilistic and deterministic 
Primality Test algorithms such as Fermat, AKS, Miller-
Rabin, and Solovay Strassen on prime numbers on a 
large scale. The results showed that the AKS (Agrawal-
Kayal-Saxena Test) is the most efficient primality test 
algorithm among others. 

In this study, researchers had an interest in 
generating large numbers of prime numbers with the 
algorithms of The Sieve of Eratosthenes, The Sieve of 
Atkins, and The Sieve of Sundaram, and tested their 
accuracy using the Fermat Primality Test Algorithm. 
The test results will be displayed in the form of tables 
and graphs. 

II. LITERATURE REVIEW 

A. Fermat Primality Test Algorithm  

Testing of prime numbers can use several algorithms, 

namely by testing prime numbers with Fermat or using 

the Miller Rabin algorithm. In this discussion only using 

prime number testing algorithms using Fermat's 

Theory. Testing prime numbers with the Fermat 

algorithm is a probability, so it needs to be tested several 

times until then it can be ascertained that the prime 

number is deterministic. 

 

 a (n-1) mod n ≡ 1 , where  1 < a < n ….. (1) 

 

a = random number 

n = prime number 

 

If the modulo results are ≠ 1, then n is not a prime 

number (Agrawal, 2006).  

 

Example: Test number 37, whether prime or not prime. 

We take a = 2, n = 37, then : 

 

2 (37 – 1)  ≡ 1 (mod 37) = 2 36 mod 37 = 1. 

 

Because the modulo results are 1, then number 37 is a 

prime number. 

 

B. The Sieve of Eratosthenes 

The following is the process of the Sieve of 

Eratosthenes algorithm in generating prime numbers: 

 

Step - 1 :  

Make a list of numbers from 1 to n 

 
1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

Step - 2 :  

Mark the first prime number in number 2 (Pande, Prime 

Generating Algorithms by Skipping Composite 

Divisors, 2014), then mark and cross all numbers that 

are multiples of number 2 (E.O'Neill, 2009). 

 
  2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

Step - 3 :  

Mark the next prime number in number 3 then mark and 

cross all numbers which are multiples of 3. 

 
 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

 

Step - 4 :  

Repeat steps - 2 and step - 3 until all multiples of 

numbers are crossed. 

 
 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

Step – 5 : 

Prime numbers are numbers from 2-n that are not 

crossed during the multiple deletion process of the 

previous number (Apdilah, Harahap, & Khairina, 2017) 

 
 2 3  5  7    

11  13    17  19  

  23      29  

31      37    

41  43    47  49  

 

The series of prime numbers between 2 - 50 are : 2, 3, 

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49 
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C. The Sieve of Atkins 

Following is the process of The Sieve of Atkins 

algorithm in filtering prime numbers: 

 

Step – 1 : 

Determine the search for prime numbers of numbers 

from 1 – n, where in this study we will generate prime 

numbers from 1- 50, so that n = 50.  

 

Step – 2 : 

Mark numbers 2, 3 and 5 as prime numbers. 

 

Step – 3 : 

Calculate the equation based on the following 3 blocks: 

 

4x2 + y2 mod 4 => 1 or 5  4x2 + y2 
 < n....(2) 

3x2 + y2 mod 6 => 1       3x2 + y2  < n …… (3) 

3x2 – y2 mod 12 => 11  0 < 3x2 – y2 < n .. (4) 

 

Formula 2 Formula 3 Formula 4 

x y n x y n x y n 

1 1 5 1 1 4 1 1 2 

1 2 8 1 2 7 2 1 11 

1 3 13 1 3 12 2 2 8 

1 4 20 1 4 19 2 3 3 

1 5 29 1 5 28 3 1 26 

1 6 40 1 6 39 3 2 23 

2 1 17 2 1 13 3 3 18 

2 2 20 2 2 16 3 4 11 

2 3 25 2 3 21 3 5 2 

2 4 32 2 4 28 4 1 47 

2 5 41 2 5 37 4 2 44 

3 1 37 2 6 48 4 3 39 

3 2 40 3 1 28 4 4 32 

3 3 45 3 2 31 4 5 23 

   3 3 36 4 6 12 

   3 4 43    

   4 1 49    

 

Step – 4 :  

In this step, there are two steps, namely: 

a. Delete the value of n which the module results do  

not match with the requirements of modulo  

formulas 2, 3 and 4. 

b. Delete numbers that are not square-free numbers 

 

 Explanation of square-free numbers: 

Square-free numbers are integer integers that 

cannot be divided by perfect squares other than 1. That 

is, the main factorization has exactly one factor for each 

prime that appears in it.  

As an example, 10 = 2 ⋅ 5 is quadratic free, but 18 = 2 ⋅ 

3 ⋅ 3 is not square-free numbers, because 18 can be 

divided by 9 = 2.  

 

Can be seen in the table below, numbers that are 

not square-free numbers are 25, 45, 49.  

Proof that 3 numbers below are not square-free are: 

 25 => is divided by 25 which is the square of 5. 

Example  →  25 : 52 = 1 

 45 => is divided by 45 which is the square of 3. 

Example  →  45 : 32 = 1  

 49 => is divided by 49 which is the square of 7. 

Example  → 49 : 72 = 1 

 

4x2 + y2 mod 4 

= 1 or 5 

3x2 + y2 mod 6  

= 1 

3x2 – y2 mod 12 

 = 11 

5 mod 4 = 1 4 mod 6 = 4 2 mod 12 = 2 

8 mod 4 = 0 7 mod 6 = 1 11 mod 12 = 11 

13 mod 4 = 1 12 mod 6 = 0 8 mod 12 = 8 

20 mod 4 = 0 19 mod 6 = 1 3 mod 12 = 3  

29 mod 4 = 1 28 mod 6 = 4 26 mod 12 = 2 

40 mod 4 = 0 39 mod 6 = 3 23 mod 12 = 11 

17 mod 4 = 1 13 mod 6 = 1 18 mod 12 = 6 

20 mod 4 = 0 16 mod 6 =4 11 mod 12 = 11 

25 21 mod 6 = 3 2 mod 12 = 2 

32 mod  4 = 0 28 mod 6 = 4 47 mod 12 = 11 

41 mod 4 = 1 37 mod 6 = 1 44 mod 12 = 8 

37 mod 4 = 1 48 mod 6 =0 39 mod 12 = 3 

40 mod 4 = 0 28 mod 6 = 4 32 mod 12 = 8 

45 31 mod 6 = 1 23 mod 12 = 11 

 36 mod 6 = 0 12 mod 12 = 0 

 43 mod 6 = 1  

 49  

 

Step – 5 : 

After step - 4, list the remaining selection numbers:  

 

4x2 + y2 mod 4 

= 1 or 5 

3x2 + y2 mod 6  

= 1 

3x2 – y2 mod 12 

 = 11 

5 mod 4 = 1 7 mod 6 = 1 11 mod 12 = 11 

13 mod 4 = 1 19 mod 6 = 1 23 mod 12 = 11 

29 mod 4 = 1 13 mod 6 = 1 11 mod 12 = 11 

17 mod 4 = 1 37 mod 6 = 1 47 mod 12 = 11 

41 mod 4 = 1 31 mod 6 = 1 23 mod 12 = 11 

37 mod 4 = 1 43 mod 6 = 1  

 

Step – 6 : 

Delete repeated numbers in step number list - 5, and re-

create a new list. 

 

4x2 + y2 mod 4 

= 1 or 5 

3x2 + y2 mod 6  

= 1 

3x2 – y2 mod 12 

 = 11 

5 7 11 
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13 19 23 

29 31 47 

17 43  

41    

37   

 

Arrange the prime numbers obtained in this step from 

the smallest to the largest number. 

 

Here is the intermediate prime number 1- 50 : 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 

 

D. The Sieve of Sundaram  

 

The process of The Sieve of Sundaram algorithm is as 

follows: 

 

Step – 1 :  

Determine the value of n as the range of prime numbers. 

We suppose n = 102. Make a number list according to 

the formula : (n-2)/2 = (102-2)/ 2, where there are 50 

numbers in the list: 

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

  

Step – 2 :  

Mark and cross out the numbers that are the result of:  

i + j + 2ij ≤ n …….  (5) 

 

where the test value i and j the first time simultaneously 

starts from number 1. 

 

Selection 1:  

 

i j i + j + 2*i*j 

1 1 4 

1 2 7 

1 3 10 

1 4 13 

1 5 16 

1 6 19 

1 7 22 

1 8 25 

1 9 28 

1 10 31 

1 11 34 

1 12 37 

1 13 40 

1 14 43 

1 15 46 

1 16 49 

 

The above selection iteration will stop until the value of 

j < 50. 

 

The Result of Selection 1 : 

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

Step -3 :  

Repeat step-2 to cross out numbers that are not prime 

numbers, and ignore the number of results i + j + 2*i*j 

that same from the selection results obtained in the 

previous stage. 

 

Selection 2 :  

 

i j i + j + 2*i*j 

2 1 7 => repeat 

2 2 12 

2 3 17 

2 4 22 => repeat 

2 5 27 

2 6 32 

2 7 37 => repeat 

2 8 42 

2 9 47 

 

The Result of Selection 2 :  

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

Step - 4 :  

Repeat step-2 to cross out numbers that are not prime 

numbers, and ignore the number of results i + j + 2*i*j 

that same from the selection results obtained in the 

previous stage. 

 

Selection 3 :  

 

i j i + j + 2*i*j 

3 1 10 => repeat  

https://doi.org/10.33395/sinkron.v3i1.211


 

Journal Publications & Informatics Engineering Research 
Volume 3, Number 2, April  2019 

DOI : https://doi.org/10.33395/sinkron.v3i1.211  

 e-ISSN : 2541-2019 
 p-ISSN : 2541-044X 

 

 

297 

 

3 2 17 => repeat  

3 3 24 

3 4 31 => repeat 

3 5 38 

3 6 45 

 

The Result of Selection 3 :  

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 

Step -5 :  

Repeat step-2 to cross out numbers that are not prime 

numbers, and ignore the number of results i + j + 2*i*j 

that same from the selection results obtained in the 

previous stage. 

 

Selection 4 :  

 

i j i + j + 2*i*j 

4 1 13 => repeat 

4 2 22 => repeat 

4 3 31 = > repeat 

4 4 40 => repeat 

4 5 49 => repeat 

 

At this stage of selection, where i = 4 and j = 1 ≤ j ≤ 5, 

it looks like all numbers have been repeated, so the 

iteration stops at step - 4. 

 

Step – 6 : 

Prime numbers are searched by formulas 2*x + 1, where 

x is the result of number selection in step - 3. 

 

Last Selection Number 2*x + 1 

1 3 

2 5 

3 7 

5 11 

6 13 

8 17 

9 19 

11 23 

14 29 

15 31 

18 37 

20 41 

21 43 

23 47 

26 53 

29 59 

30 61 

33 67 

35 71 

36 73 

39 79 

41 83 

44 89 

48 97 

50 101 

 

Between prime numbers 1 – 102 : 

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 

61, 67, 71, 73, 79, 83, 89, 97, and 101 (Pruitt & 

Shannon, 2018). 

 

III. RESULT AND DISCUSSION 

The comparison made in this discussion is to test 
accuracy and speed to generate a large prime number. 
The comparison of accuracy in determining the 
accuracy of the three methods is tested by the Fermat 
method with a certain range of results can be seen as 
follows: 

No Method Range 
Total 
Prime 

Invalid 
(Fermat 

test) 

1 Eratosthenes 

100 25 0 

1000 168 0 

1000000 78498 0 

2 Atkins 

100 25 0 

1000 168 0 

1000000 78498 0 

3 Sundaram 

100 25 0 

1000 168 0 

1000000 78498 0 

 

The speed comparison of the three methods to generate 
the prime numbers is as follows: 

No Method Range Milli second 

1 Eratosthenes 

1000 0.0 

1000000 1.84856009483337 

10000000 19.5828666687011 
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2 Atkins 

1000 0.01612544059753 

1000000 3.39212107658386 

10000000 99.6193344593048 

3 Sundaram 

1000 0.0 

1000000 3.88802647590637 

10000000 26.3855686187744 

 

IV. CONCLUSION AND SUGGESTION 

A. Conclusion  

The conclusions of this study are as follows: 

1. The Sieve of Eratosthenes, Atkins and Sundaram 

algorithms can generate large numbers of prime 

numbers with good accuracy, this was tested by the 

Fermat Primality Test Algorithm. 

2. The Sieve of Eratosthenes, Atkins and Sundaram 

algorithms generate the same number of primes in 

each test of the range 100, 1000, and 1000000 

numbers. 

3. From the speed, ratio generates prime numbers in 

three number range groups, a The Sieve of 

Eratosthenes have a faster time to generate prime 

numbers on a large scale than the other two 

algorithms. 

B. Suggestion 

The suggestion for this research in the future is to be 

able to test the accuracy of a prime number generator 

with other primes testing algorithms such as Rabin 

Miller and Solovay-Strassen.  
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