

Journal Publications & Informatics Engineering Research
Volume 3, Number 2, April 2019

DOI : https://doi.org/10.33395/sinkron.v3i1.211

 e-ISSN : 2541-2019
 p-ISSN : 2541-044X

293

The Comparison of Methods for Generating

Prime Numbers between The Sieve of

Eratosthenes, Atkins, and Sundaram

 Muhammad Khoiruddin Harahap

Politeknik Ganesha

Medan, Indonesia

choir.harahap@yahoo.com

Nurul Khairina

Universitas Medan Area

Medan, Indonesia

nurulkhairina27@gmail.com

Abstract — Prime numbers are unique numbers. Prime numbers are numbers that only

have a dividing factor consisting of numbers 1 and the number itself. The prime numbers

from 1 to n that are relatively small can be generated manually, but a prime number

generator algorithm is needed to generate prime numbers on a large scale. This study

compares three prime number generator algorithms, namely: The Sieve of Eratosthenes,

The Sieve of Atkins, and The Sieve of Sundaram. These three sieve algorithms have

their own differences in generating prime numbers. The Sieve of Eratosthenes uses a

simpler method by crossing multiples of prime numbers and marking them as non-prime

numbers. The Sieve of Atkins uses several requirements for quadratic equations and

modulus in determining prime numbers. The Sieve of Sundaram has an algorithm similar

to The Sieve of Atkins, but there are requirements for linear equations to determine

prime numbers. This study aims to see a comparison of these three algorithms in terms

of accuracy and speed in generating prime numbers on a large scale. The results of this

study indicate The Sieve of Eratosthenes, Atkins and Sundaram algorithms can generate

large numbers of prime numbers with good accuracy, this was tested by the Fermat

Primality Test Algorithm. The conclusion that can be drawn from this study, The Sieve

of Eratosthenes have a faster time to generate prime numbers on a large scale than the

other two algorithms.

Keywords — prime number; eratosthenes; atkins; sundaram

I. INTRODUCTION

In computer science, a discussion of prime numbers

is a simple matter that is enough to attract the attention
of researchers. One of the uses of prime numbers is to
generate public keys and private keys on cryptography.
Prime numbers are unique numbers. According to
mathematical theory, the uniqueness of number 2 is
where number 2 is the first and only prime number
(Pande, 2015).

The sieve algorithm is an algorithm that searches for
prime numbers starting from 1 to n (Sorenson, 2015).
There are several sieve algorithms, including The Sieve
of Eratosthenes, The Sieve of Atkins, The Sieve of
Sundaram, and Mersenne Prime Number (Maltare &
Chudasama, 2016). Besides the prime number generator
algorithm, there is also a special algorithm for testing

prime numbers such as Fermat Little Theorem, Miller-
Rabin, Solovoy-Strassen and so on (Tarafder &
Chakroborty, 2019).

There are several previous studies that are relevant
to this study. Research conducted by (Kochar & Dheeraj
Puri Goswami, 2016), do a comparison of two prime
number generator algorithms, namely The Sieve of
Eratosthenes and The Sieve of Sundaram. The Primality
Test is carried out with several algorithms such as
Miller-Rabin, Fermat, Solovoy-Strassen, and
Frobenius. From the test results, it can be seen that the
performance of The Sieve of Eratosthenes is better than
The Sieve of Sundaram.

Research conducted by (Apdilah, Harahap, &
Khairina, 2017) perform prime generation with the
Mersenne Prime Number algorithm and perform testing
with Miller-Rabin Primality Test. This research can

https://doi.org/10.33395/sinkron.v3i1.211
mailto:author@email.com
mailto:nurulkhairina27@gmail.com

Journal Publications & Informatics Engineering Research
Volume 3, Number 2, April 2019

DOI : https://doi.org/10.33395/sinkron.v3i1.211

 e-ISSN : 2541-2019
 p-ISSN : 2541-044X

294

produce prime numbers on a large scale. This large
prime number is useful for RSA cryptographic
algorithms, which can increase the security of public
keys and private keys.

Research conducted by (Rajput & Bajpai, 2019)
conduct research on probabilistic and deterministic
Primality Test algorithms such as Fermat, AKS, Miller-
Rabin, and Solovay Strassen on prime numbers on a
large scale. The results showed that the AKS (Agrawal-
Kayal-Saxena Test) is the most efficient primality test
algorithm among others.

In this study, researchers had an interest in
generating large numbers of prime numbers with the
algorithms of The Sieve of Eratosthenes, The Sieve of
Atkins, and The Sieve of Sundaram, and tested their
accuracy using the Fermat Primality Test Algorithm.
The test results will be displayed in the form of tables
and graphs.

II. LITERATURE REVIEW

A. Fermat Primality Test Algorithm

Testing of prime numbers can use several algorithms,

namely by testing prime numbers with Fermat or using

the Miller Rabin algorithm. In this discussion only using

prime number testing algorithms using Fermat's

Theory. Testing prime numbers with the Fermat

algorithm is a probability, so it needs to be tested several

times until then it can be ascertained that the prime

number is deterministic.

 a (n-1) mod n ≡ 1 , where 1 < a < n ….. (1)

a = random number

n = prime number

If the modulo results are ≠ 1, then n is not a prime

number (Agrawal, 2006).

Example: Test number 37, whether prime or not prime.

We take a = 2, n = 37, then :

2 (37 – 1) ≡ 1 (mod 37) = 2 36 mod 37 = 1.

Because the modulo results are 1, then number 37 is a

prime number.

B. The Sieve of Eratosthenes

The following is the process of the Sieve of

Eratosthenes algorithm in generating prime numbers:

Step - 1 :

Make a list of numbers from 1 to n

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step - 2 :

Mark the first prime number in number 2 (Pande, Prime

Generating Algorithms by Skipping Composite

Divisors, 2014), then mark and cross all numbers that

are multiples of number 2 (E.O'Neill, 2009).

 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step - 3 :

Mark the next prime number in number 3 then mark and

cross all numbers which are multiples of 3.

 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step - 4 :

Repeat steps - 2 and step - 3 until all multiples of

numbers are crossed.

 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step – 5 :

Prime numbers are numbers from 2-n that are not

crossed during the multiple deletion process of the

previous number (Apdilah, Harahap, & Khairina, 2017)

 2 3 5 7

11 13 17 19

 23 29

31 37

41 43 47 49

The series of prime numbers between 2 - 50 are : 2, 3,

5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49

https://doi.org/10.33395/sinkron.v3i1.211

Journal Publications & Informatics Engineering Research
Volume 3, Number 2, April 2019

DOI : https://doi.org/10.33395/sinkron.v3i1.211

 e-ISSN : 2541-2019
 p-ISSN : 2541-044X

295

C. The Sieve of Atkins

Following is the process of The Sieve of Atkins

algorithm in filtering prime numbers:

Step – 1 :

Determine the search for prime numbers of numbers

from 1 – n, where in this study we will generate prime

numbers from 1- 50, so that n = 50.

Step – 2 :

Mark numbers 2, 3 and 5 as prime numbers.

Step – 3 :

Calculate the equation based on the following 3 blocks:

4x2 + y2 mod 4 => 1 or 5  4x2 + y2
 < n....(2)

3x2 + y2 mod 6 => 1  3x2 + y2 < n …… (3)

3x2 – y2 mod 12 => 11  0 < 3x2 – y2 < n .. (4)

Formula 2 Formula 3 Formula 4

x y n x y n x y n

1 1 5 1 1 4 1 1 2

1 2 8 1 2 7 2 1 11

1 3 13 1 3 12 2 2 8

1 4 20 1 4 19 2 3 3

1 5 29 1 5 28 3 1 26

1 6 40 1 6 39 3 2 23

2 1 17 2 1 13 3 3 18

2 2 20 2 2 16 3 4 11

2 3 25 2 3 21 3 5 2

2 4 32 2 4 28 4 1 47

2 5 41 2 5 37 4 2 44

3 1 37 2 6 48 4 3 39

3 2 40 3 1 28 4 4 32

3 3 45 3 2 31 4 5 23

 3 3 36 4 6 12

 3 4 43

 4 1 49

Step – 4 :

In this step, there are two steps, namely:

a. Delete the value of n which the module results do

not match with the requirements of modulo

formulas 2, 3 and 4.

b. Delete numbers that are not square-free numbers

 Explanation of square-free numbers:

Square-free numbers are integer integers that

cannot be divided by perfect squares other than 1. That

is, the main factorization has exactly one factor for each

prime that appears in it.

As an example, 10 = 2 ⋅ 5 is quadratic free, but 18 = 2 ⋅

3 ⋅ 3 is not square-free numbers, because 18 can be

divided by 9 = 2.

Can be seen in the table below, numbers that are

not square-free numbers are 25, 45, 49.

Proof that 3 numbers below are not square-free are:

 25 => is divided by 25 which is the square of 5.

Example → 25 : 52 = 1

 45 => is divided by 45 which is the square of 3.

Example → 45 : 32 = 1

 49 => is divided by 49 which is the square of 7.

Example → 49 : 72 = 1

4x2 + y2 mod 4

= 1 or 5

3x2 + y2 mod 6

= 1

3x2 – y2 mod 12

 = 11

5 mod 4 = 1 4 mod 6 = 4 2 mod 12 = 2

8 mod 4 = 0 7 mod 6 = 1 11 mod 12 = 11

13 mod 4 = 1 12 mod 6 = 0 8 mod 12 = 8

20 mod 4 = 0 19 mod 6 = 1 3 mod 12 = 3

29 mod 4 = 1 28 mod 6 = 4 26 mod 12 = 2

40 mod 4 = 0 39 mod 6 = 3 23 mod 12 = 11

17 mod 4 = 1 13 mod 6 = 1 18 mod 12 = 6

20 mod 4 = 0 16 mod 6 =4 11 mod 12 = 11

25 21 mod 6 = 3 2 mod 12 = 2

32 mod 4 = 0 28 mod 6 = 4 47 mod 12 = 11

41 mod 4 = 1 37 mod 6 = 1 44 mod 12 = 8

37 mod 4 = 1 48 mod 6 =0 39 mod 12 = 3

40 mod 4 = 0 28 mod 6 = 4 32 mod 12 = 8

45 31 mod 6 = 1 23 mod 12 = 11

 36 mod 6 = 0 12 mod 12 = 0

 43 mod 6 = 1

 49

Step – 5 :

After step - 4, list the remaining selection numbers:

4x2 + y2 mod 4

= 1 or 5

3x2 + y2 mod 6

= 1

3x2 – y2 mod 12

 = 11

5 mod 4 = 1 7 mod 6 = 1 11 mod 12 = 11

13 mod 4 = 1 19 mod 6 = 1 23 mod 12 = 11

29 mod 4 = 1 13 mod 6 = 1 11 mod 12 = 11

17 mod 4 = 1 37 mod 6 = 1 47 mod 12 = 11

41 mod 4 = 1 31 mod 6 = 1 23 mod 12 = 11

37 mod 4 = 1 43 mod 6 = 1

Step – 6 :

Delete repeated numbers in step number list - 5, and re-

create a new list.

4x2 + y2 mod 4

= 1 or 5

3x2 + y2 mod 6

= 1

3x2 – y2 mod 12

 = 11

5 7 11

https://doi.org/10.33395/sinkron.v3i1.211

Journal Publications & Informatics Engineering Research
Volume 3, Number 2, April 2019

DOI : https://doi.org/10.33395/sinkron.v3i1.211

 e-ISSN : 2541-2019
 p-ISSN : 2541-044X

296

13 19 23

29 31 47

17 43

41

37

Arrange the prime numbers obtained in this step from

the smallest to the largest number.

Here is the intermediate prime number 1- 50 :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

D. The Sieve of Sundaram

The process of The Sieve of Sundaram algorithm is as

follows:

Step – 1 :

Determine the value of n as the range of prime numbers.

We suppose n = 102. Make a number list according to

the formula : (n-2)/2 = (102-2)/ 2, where there are 50

numbers in the list:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step – 2 :

Mark and cross out the numbers that are the result of:

i + j + 2ij ≤ n ……. (5)

where the test value i and j the first time simultaneously

starts from number 1.

Selection 1:

i j i + j + 2*i*j

1 1 4

1 2 7

1 3 10

1 4 13

1 5 16

1 6 19

1 7 22

1 8 25

1 9 28

1 10 31

1 11 34

1 12 37

1 13 40

1 14 43

1 15 46

1 16 49

The above selection iteration will stop until the value of

j < 50.

The Result of Selection 1 :

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step -3 :

Repeat step-2 to cross out numbers that are not prime

numbers, and ignore the number of results i + j + 2*i*j

that same from the selection results obtained in the

previous stage.

Selection 2 :

i j i + j + 2*i*j

2 1 7 => repeat

2 2 12

2 3 17

2 4 22 => repeat

2 5 27

2 6 32

2 7 37 => repeat

2 8 42

2 9 47

The Result of Selection 2 :

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step - 4 :

Repeat step-2 to cross out numbers that are not prime

numbers, and ignore the number of results i + j + 2*i*j

that same from the selection results obtained in the

previous stage.

Selection 3 :

i j i + j + 2*i*j

3 1 10 => repeat

https://doi.org/10.33395/sinkron.v3i1.211

Journal Publications & Informatics Engineering Research
Volume 3, Number 2, April 2019

DOI : https://doi.org/10.33395/sinkron.v3i1.211

 e-ISSN : 2541-2019
 p-ISSN : 2541-044X

297

3 2 17 => repeat

3 3 24

3 4 31 => repeat

3 5 38

3 6 45

The Result of Selection 3 :

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Step -5 :

Repeat step-2 to cross out numbers that are not prime

numbers, and ignore the number of results i + j + 2*i*j

that same from the selection results obtained in the

previous stage.

Selection 4 :

i j i + j + 2*i*j

4 1 13 => repeat

4 2 22 => repeat

4 3 31 = > repeat

4 4 40 => repeat

4 5 49 => repeat

At this stage of selection, where i = 4 and j = 1 ≤ j ≤ 5,

it looks like all numbers have been repeated, so the

iteration stops at step - 4.

Step – 6 :

Prime numbers are searched by formulas 2*x + 1, where

x is the result of number selection in step - 3.

Last Selection Number 2*x + 1

1 3

2 5

3 7

5 11

6 13

8 17

9 19

11 23

14 29

15 31

18 37

20 41

21 43

23 47

26 53

29 59

30 61

33 67

35 71

36 73

39 79

41 83

44 89

48 97

50 101

Between prime numbers 1 – 102 :

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97, and 101 (Pruitt &

Shannon, 2018).

III. RESULT AND DISCUSSION

The comparison made in this discussion is to test
accuracy and speed to generate a large prime number.
The comparison of accuracy in determining the
accuracy of the three methods is tested by the Fermat
method with a certain range of results can be seen as
follows:

No Method Range
Total
Prime

Invalid
(Fermat

test)

1 Eratosthenes

100 25 0

1000 168 0

1000000 78498 0

2 Atkins

100 25 0

1000 168 0

1000000 78498 0

3 Sundaram

100 25 0

1000 168 0

1000000 78498 0

The speed comparison of the three methods to generate
the prime numbers is as follows:

No Method Range Milli second

1 Eratosthenes

1000 0.0

1000000 1.84856009483337

10000000 19.5828666687011

https://doi.org/10.33395/sinkron.v3i1.211

Journal Publications & Informatics Engineering Research
Volume 3, Number 2, April 2019

DOI : https://doi.org/10.33395/sinkron.v3i1.211

 e-ISSN : 2541-2019
 p-ISSN : 2541-044X

298

2 Atkins

1000 0.01612544059753

1000000 3.39212107658386

10000000 99.6193344593048

3 Sundaram

1000 0.0

1000000 3.88802647590637

10000000 26.3855686187744

IV. CONCLUSION AND SUGGESTION

A. Conclusion

The conclusions of this study are as follows:

1. The Sieve of Eratosthenes, Atkins and Sundaram

algorithms can generate large numbers of prime

numbers with good accuracy, this was tested by the

Fermat Primality Test Algorithm.

2. The Sieve of Eratosthenes, Atkins and Sundaram

algorithms generate the same number of primes in

each test of the range 100, 1000, and 1000000

numbers.

3. From the speed, ratio generates prime numbers in

three number range groups, a The Sieve of

Eratosthenes have a faster time to generate prime

numbers on a large scale than the other two

algorithms.

B. Suggestion

The suggestion for this research in the future is to be

able to test the accuracy of a prime number generator

with other primes testing algorithms such as Rabin

Miller and Solovay-Strassen.

V. REFERENCES

Agrawal, M. (2006). Primality Tests Based on Fermat’s

Little Theorem. In Distributed Computing and

Networking (pp. 288-293). Guwahati:

Springer, Berlin, Heidelberg.
Apdilah, D., Harahap, M. K., & Khairina, N. (2017).

Generating Mersenne Prime Number Using

Rabin Miller Primality Probability Test to Get

Big Prime Number Cryptography in RSA.

International Journal of Information System &

Technology, 1-7.

E.O'Neill, M. (2009). The Genuine Sieve of

Eratosthenes. Journal of Functional

Programming (JEP), 95-106.

Kochar, V., & Dheeraj Puri Goswami, M. A. (2016).

Contrast Various Test For Primality.

International Conference on Accessibility to

Digital World (ICADW) (pp. 1-6). Guwahati:

IEEE.

Maltare, N., & Chudasama, C. (2016). Experimenting

Large Prime Numbers Generation in MPI

Cluster. International Congress on

Information and Communication Technology,

Advances in Intelligent Systems and

Computing (pp. 61-66). Gujarat: Springer

Singapore.

Pande, N. A. (2014). Prime Generating Algorithms by

Skipping Composite Divisors. International

Journal of Computer Science & Engineering

Technology (IJCSET), 935-940.

Pande, N. A. (2015). Refinement of Prime Generating

Algorithms. International Journal of

Innovative Science, Engineering &

Technology (IJISET), 21-24.

Prime Sieve Using Binary Quadratic

Forms2003Mathematics of Computation

1023-1030

Pruitt, K., & Shannon, A. G. (2018). Modular Class

Primes in the Sundaram Sieve. International

Journal of Mathematical Education in Science

and Technology, 1-4.

Rajput, J., & Bajpai, A. (2019). Study on Deterministic

and Probabilistic Computation of Primality

Test. International Conference on Sustainable

Computing in Science, Technology &

Management (SUSCOM) (pp. 2206-2212).

Jaipur : India: Elsevier SSRN.

Sorenson, J. P. (2015). Two compact incremental prime

sieves. LMS J. Comput. Math., 675–683.

Tarafder, A. K., & Chakroborty, T. (2019). A

Comparative Analysis of General, Sieve-of-

Eratosthenes and Rabin-Miller Approach for

Prime Number Generation. International

Conference on Electrical, Computer and

Communication Engineering (ECCE) (pp. 1-

4). Bangladesh: IEEE.

https://doi.org/10.33395/sinkron.v3i1.211

